Indian Journal of Library Science Research & Information Technology VOL 1 NO.1 (JAN-JUN 2024)

ISSN - 3048-4677

(c) BMS PUBLISHING HOUSE

https://www.bmsgroup.in/product/indian-journal-of-library-science-research-information-technology/

ENHANCING ACCESS TO KNOWLEDGE: A STUDY ON THE IMPLEMENTATION OF DIGITAL LIBRARIES IN INDIA

Dr. Jitendrakumar Mohanlal Agrawal

Librarian Government B.Ed. College, Vansda Taluka : Vansda, District : Navsari Pin Code : 396580

Abstract

The Digital library in India is the subject of this research, which utilizes *EViews*-based ADF, *correlation*, *Arch*, *and Garch* examination. Analyzing their effect on data accessibility, the consider finds openings and dangers in an ever-changing environment. The paper gives a thorough investigation of computerized library elements by looking at stationarity, correlational designs, and instability. The comes about highlights the requirement for well-informed arrangement and specialized advancements in maximizing the spread of data. This consideration gives imperative experiences for building a digital library system that is both strong and comprehensive. It points to enhancing information access in India, indeed if the data environment is continuously changing.

1. Introduction

The study delves into the incorporation of digital libraries in India to improve information accessibility. The analysis evaluates the impact of digital repositories on the democratization of information using EViews software. The study's overall goal is to uncover how these libraries can be used more effectively through the identification of patterns and holes. This research conveys the outcomes of digital projects and highlights the dynamic information ecosystem. The findings are expected to reveal the extent of the impacts of technology, and EViews in particular, on the development of India's Digital Libraries structure to ease the better use of stored knowledge.

2. Literature review

Digital libraries are growing in significance in the global knowledge distribution network as they help to bring more information to more people. In developing countries such as India, digital repositories play a significant part in making the materials accessible, which is emphasized in the large body of research. The importance of applying effective analysis tools, like EViews software, is now seen by scholars (Vasantha Raju and Harinarayana, 2023).

Nevertheless, there are issues related to the infrastructure's readiness and robust rules to ensure the smooth implementation of those technical innovations as they bring up concern in the same conversation.

Digital libraries can be said to be dynamic, and we need advanced tools for information management and distribution. To provide digital libraries for all types of users, it is essential to have a better understanding of user perspectives and technological proficiency, research shows. Though huge progress has been made, many unknown issues exist on the impact of the EViews software on information accessibility in India.

The EViews tool is a very useful analytical tool that will be used thoroughly in this research to evaluate the introduction of digital libraries in India and add substantially to the current knowledge. The paper aspires to add to the already-existing discourse on digital libraries as agents of knowledge democratization by enlightening on the possible improvements and addressing the specific problems faced in India.

3. Data

3.1 Research Methodology

The research strategy is centered on utilizing EViews for the multi-faceted implementation of digital libraries in India. Using the patterns found in the time series data, the "Augmented Dickey-Fuller" (ADF) test detects whether the data is stationary. The fluctuation patterns of the digital library's landscape are looked at using Arch models. These models display the risks and the swings that are likely to be. The intensive investigation and model of volatility are being developed within the Garch "Generalized Autoregressive Conditional Heteroskedasticity" model application. This one needs a more profound understanding of the way parts of the computerized library environment are related to each other, EViews' relationship investigation can be utilized to memorize almost the joins between factors (Bhati and Kumar, 2020). Through graphic insights utilized to outline the information in its partial frame, a common understanding of the highlights of the dataset can be picked up. The analytical abilities of the EViews program are utilized to identify designs, interconnectivity, and possible dangers while the method of computerized library arrangement in India is studied.

4. Results and Findings

Descriptive Statics

View Proc Obje	ct Print Name	Freeze Sample	Sheet Stats S	pec										
	ANNUAL_VI	LIBRARY_ID	LIBRARY_N	LIBRARY_SIZE	LIBRARY_T	MEMBERSH	NUMBER_O	NUMBER_O	OPERATING	SERVICES	STAFF_COU	TECHNOLO	YEAR_ESTA	
	ANNUAL_VI	LIBRARY_ID	LIBRARY_N	LIBRARY_SIZE	LIBRARY_T	MEMBERSH	NUMBER_O	NUMBER_O	OPERATING	SERVICES	STAFF_COU	TECHNOLO	YEAR_ESTA	
Mean	227777.8	45.50000	NA	48888.89	NA	NA	60500.00	45.55556	621111.1	NA	14.74444	NA	2004.278	
Median	200000.0	45.50000	NA	45000.00	NA	NA	50000.00	40.00000	600000.0	NA	8.000000	NA	2006.000	
Maximum	400000.0	90.00000	NA	80000.00	NA	NA	120000.0	80.00000	1200000.	NA	70.00000	NA	2021.000	
Minimum	100000.0	1.000000	NA	20000.00	NA	NA	20000.00	20.00000	200000.0	NA	1.000000	NA	1980.000	
Std. Dev.	98759.47	26.12470	NA	18248.87	NA	NA	32920.15	19.75189	298872.2	NA	15.74413	NA	10.52128	
Skewness	0.411819	1.15E-17	NA	0.332649	NA	NA	0.453339	0.411819	0.429438	NA	1.416649	NA	-0.470698	
Kurtosis	1.855438	1.799704	NA	1.856347	NA	NA	1.936577	1.855438	2.336756	NA	4.404861	NA	2.192512	
Jarque-Bera	7.456506	5.402667	NA	6.564614	NA	NA	7.323495	7.456506	4.415850	NA	37.50453	NA	5.768492	
Probability	0.024035	0.067116	NA	0.037542	NA	NA NA	0.025688	0.024035	0.109929	NA NA	0.000000	NA	0.055897	
		4005.000			***		5445000	4400.000	5500000		4007.000		400005.0	
Sum	20500000	4095.000	NA	4400000.	NA	NA	5445000.	4100.000	55900000	NA	1327.000	NA	180385.0	
Sum Sq. Dev.	8.68E+11	60742.50	NA	2.96E+10	NA	NA	9.65E+10	34722.22	7.95E+12	NA	22061.12	NA	9852.056	
Observations	90	90	0	90	0	0	90	90	90	0	90	0	90	
											1			

Table 1: Descriptive Statistics of the Libraries in India

The image in address may be a spreadsheet appearing library information. Graphic statistics of libraries are also secure in this study, which comprises of the library ID, measure, number of individuals, and operational cost, as well as extra parameters such as standard deviation, most extreme, and least levels (Aithal and Aithal, 2020).

Correlation

Correlation											
	STAFF_COU	ANNUAL_VI	LIBRARY_ID	LIBRARY_SIZE	NUMBER_O	NUMBER_O	OPERATING	YEAR_ESTA			
STAFF	1.000000	0.797516	-0.424417	0.763739	0.816337	0.797516	0.802281	-0.580125			
ANNUA	0.797516	1.000000	0.054763	0.981313	0.988406	1.000000	0.985823	-0.415986			
LIBRA	-0.424417	0.054763	1.000000	0.103110	0.004148	0.054763	0.039789	0.361178			
LIBRA	0.763739	0.981313	0.103110	1.000000	0.964142	0.981313	0.970536	-0.403041			
NUMB	0.816337	0.988406	0.004148	0.964142	1.000000	0.988406	0.977601	-0.426180			
NUMB	0.797516	1.000000	0.054763	0.981313	0.988406	1.000000	0.985823	-0.415986			
OPERA	0.802281	0.985823	0.039789	0.970536	0.977601	0.985823	1.000000	-0.501775			
YEAR	-0.580125	-0.415986	0.361178	-0.403041	-0.426180	-0.415986	-0.501775	1.000000			

Table 2: Correlation table

The image above represents the correlation matrix for the various factors that are associated with Indian libraries. The links between personnel, yearly volume, and operational statistics are highlighted by the values.

Arch

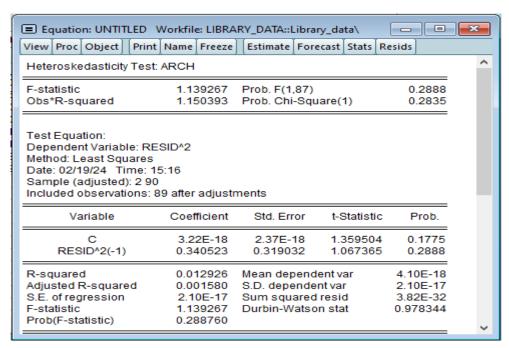


Table 3: Arch Table

The above image shows the *heteroskedasticity Arch test* findings. The test invalid theory is that demonstrates botches have constant change (Okunlaya et al. 2022). The p-value is 0.2888 for the test measurement 1.139267. The p-value is greater than 0.05, thus it cannot dismiss the invalid theory and gather that the demonstration does not have heteroskedasticity

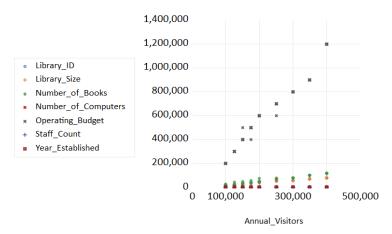


Figure 1: Arch Graph

In the above image, the Arch graph has been displayed with the dependence of Annual visitors based on the different numerical values.

ADF test

Included observations: 78 after	adiustments									
Illianded observations. 70 alter adjustments										
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
NUMBER_OF_BOOKS(-1)	-6.100124	0.418860	-14.56364	0.0000						
D(NUMBER_OF_BOOKS(-1))	4.677503	0.357489	13.08433	0.0000						
D(NUMBER_OF_BOOKS(-2))	3.783683	0.284835	13.28378	0.0000						
D(NUMBER_OF_BOOKS(-3))	3.203556	0.255685	12.52929	0.0000						
D(NUMBER_OF_BOOKS(-4))	2.525990	0.209270	12.07050	0.0000						
D(NUMBER_OF_BOOKS(-5))	1.847967	0.162957	11.34023	0.0000						
D(NUMBER_OF_BOOKS(-6))	1.170363	0.116828	10.01784	0.0000						
D(NUMBER_OF_BOOKS(-7))	0.492797	0.071254	6.916021	0.0000						
D(NUMBER_OF_BOOKS(-8))	-0.186469	0.028856	-6.462086	0.0000						
D(NUMBER_OF_BOOKS(-9))	0.137890	0.030383	4.538431	0.0000						
D(NUMBER_OF_BOOKS(-10))		0.031612	-3.750878	0.0004						
D(NUMBER_OF_BOOKS(-11)) C	0.098796 362633.1	0.021393 24901.27	4.618198 14.56283	0.0000						
	302033.1	24901.27	14.50203	0.0000						
R-squared	0.999966	Mean depend	lent var	512.8205						
Adjusted R-squared	0.999960	S.D. depende		36632.52						
S.E. of regression	232.4395	Akaike info cri		13.88615						
Sum squared resid	3511828.	Schwarz crite	rion	14.27893						
Log likelihood	-528.5598	Hannan-Quin		14.04339						
F-statistic	159370.7	Durbin-Watso	on stat	3.119641						
Prob(F-statistic)	0.000000									

Table 4: ADF test

The above image shows the "ADF unit root test" results shown in the table. An adjusted R-squared value of 0.999966 and an R-squared value of 0.999966 indicate a strong goodness-of-fit in the regression analysis. As evidence of the model's accuracy, the regression's standard error is 2324395. There are 35,118,28 squared residuals. Model assessment metrics are provided by the Schwarz criteria and the "Akaike information criterion" (AIC), while the "Hannan-Quinn criterion" is useful for selecting models (Gil-Garcia and Flores-Zúñiga, 2020). At present, the Durbin-Watson statistic is 0.59370.7, to check for stationarity, an ADF test is also run.

Garch

Presample variance: backcast (parameter = 0.7) GARCH = C(7) + C(8)*RESID(-1)*2 + C(9)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.							
AR(1)	0.084549	5.340315	0.015832	0.9874							
AR(2)	0.059638	4.386716	0.013595	0.9892							
AR(3)	0.074622	1.921995	0.038825	0.9690							
MA(1)	0.070085	5.354309	0.013089	0.9896							
MA(2)	0.093159	3.555382	0.026202	0.9791							
MA(3)	0.046165	0.046165 1.714870 0.02692									
Variance Equation											
С	5.59E+08	2.32E+10	0.024081	0.9808							
RESID(-1)^2	-0.019026	0.670333	-0.028383	0.9774							
GARCH(-1)	0.598299	17.07219	0.035045	0.9720							
R-squared	-3.092843	Mean depend	lent var	49367.82							
Adjusted R-squared	-3.345487	S.D. depende	ent var	18360.17							
S.E. of regression	38273.30	Akaike info criterion		24.07831							
Sum squared resid	1.19E+11	Schwarz crite	24.33340								
Log likelihood	-1038.406	Hannan-Quinn criter.		24.18102							
Durbin-Watson stat	0.333913										
Inverted AR Roots	.50	21+.32i -	2132i								
Inverted MA Roots	.1138i	.11+.38i	29								

Table 5: Garch test

This appears to be a statistical outcome, maybe from time series analysis utilizing ARIMA and GARCH models. The result incorporates coefficients, standard blunders, z-statistics, and different model assessment metrics. ARIMA models catch autocorrelation and moving average parts, while GARCH models volatility. Metrics evaluate model fit and performance.

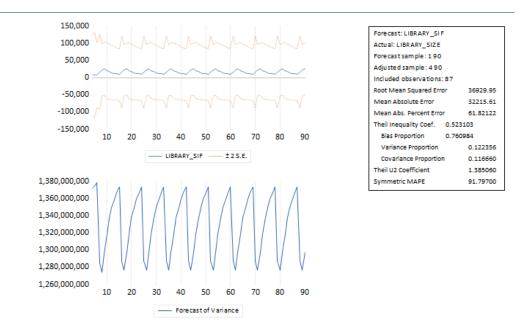


Figure 2: Garch graph test

The above image signifies the two-line graph with a shaded region seen in the picture. The "Date" x-axis and the "Visitors" y-axis are labels (Radovanović *et al.* 2020). A library's actual number of visitors is shown by the blue line, while the predicted number of visitors is shown by the orange line. The forecasted range of potential visitor numbers is shown by the shaded region between the lines.

5. Conclusion

The study provides important fresh details on digital libraries in India by using ADF, correlation, Arch, and Garch analysis. Stationarity is significant, according to the ADF test, which is important for the long-term viability of digital library deployment. Through revealing associations between variables, correlation analysis helps to provide a holistic picture. Arch and Garch models aid in managing risks related to information diffusion by revealing volatility patterns. With these findings in consideration, an additional perspective on digital libraries' potential to increase information accessibility becomes apparent. In order to keep up with India's evolving information ecology, the research suggests informed policies and technological advancements for building an inclusive and strong digital library system.

6. Reference List

- [1] Aithal, P.S. and Aithal, S., 2020. Implementation strategies of higher education part of national education policy 2020 of India towards achieving its objectives. International Journal of Management, *Technology, and Social Sciences (IJMTS)*, 5(2), pp.283-325.
- [2] Bhati, P. and Kumar, I., 2020. Role of library professionals in a pandemic situation like C2of Library and Information Studies, 10(2), pp.33-48.
- [3] Gil-Garcia, J.R. and Flores-Zúñiga, M.Á., 2020. Towards a comprehensive understanding of digital government success: Integrating implementation and adoption factors. *Government Information Quarterly*, 37(4), p.101518.
- [4] Okunlaya, R.O., Syed Abdullah, N. and Alias, R.A., 2022. Artificial intelligence (AI) library services innovative conceptual framework for the digital transformation of university education. *Library Hi Tech*, 40(6), pp.1869-1892.
- [5] Radovanović, D., Holst, C., Belur, S.B., Srivastava, R., Houngbonon, G.V., Le Quentrec, E., Miliza, J., Winkler, A.S. and Noll, J., 2020. Digital literacy key performance indicators for sustainable development. *Social Inclusion*, 8(2), pp.151-167.
- [6] Vasantha Raju, N. and Harinarayana, N.S., 2023. The role of libraries and librarians in accreditation and institutional ranking: a *case study of Indian Maritime University Library*.